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On ladder representations and affinisation of Lie algebras 

D T Stoyanov 
Institute of Nuclear Research and Nuclear Energy, Boulevard Lenin 77, Sofia, Bulgaria 

Received 30 July 1987 

Abstract. A generalisation of the procedure for constructing ladder representations of finite 
and infinite-dimensional Lie algebras is considered. Such a general procedure is further 
generalised and provides a method for affinisation of Lie algebras. A general form of the 
central term for arbitrary Lie algebra is obtained. 

Ladder representations have found different applications in physics as some of the 
simplest representations having the most clear meaning from the physical point of 
view. Usually these were particular applications for some concrete algebras. Some of 
the papers considering questions connected with the ladder representations are cited 
in Stoyanov and Todorov (1968) in which some examples are also considered. In the 
present paper we try to give a somewhat more general definition of the ladder 
representations which must be suitable for a future generalisation. Such generalisation 
is given at  the end and applied for some Lie algebras. 

We will start with the definition of ladder representations of a (finite or infinite- 
dimensional) Lie algebra. In general these are the realisation of the algebra generators 
by suitable creation and  annihilation operators acting on the corresponding Fock space. 
In this sense the space on which the algebra operators in a ladder representation act 
is in general a subspace of that Fock space. 

Let us consider the construction of these representations in more detail. With JA 
we denote the generators of the initial real Lie algebra which satisfy the following 
commutation relations: 

IJA5 J R 1  = f f ; B J C  (1) 

where f:, are the structure constants. The indices A, B, C may take finite or infinite 
values depending on the dimension of the Lie algebra. 

Suppose that a matrix representation I? of the operators J A  is given and the 
corresponding matrix elements are denoted by ( I A ) , * .  The latin letters can take suitable 
integer of half-integer values. The matrices IA can be finite or infinite dimensional. 
The next assumption is that the module M of this representation has an invariant 
non-generated quadratic form with a matric tensor denoted by G, with corresponding 
matrix elements G,k. From the invariance we may write down the following relation: 

I;G+GI,=O (2) 
for every I,. I 2  denotes the Hermitian conjugated matrix. 

Now let us introduce the set of creation and annihilation operators as operator- 
valued components of the vectors from M. In particular, by cp, we denote the annihila- 
tion and with cp Y the corresponding creation operators. The commutation relations 
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are as follows: 

[cp, cp*] = G-I. (3)  

The asterisk denotes Hermitian conjugation of the operators cp. 
The Fock space appears, as usual, by introducing the vacuum state 10) with the 

help of which one can construct the one-particle states (PF~O), the two-particle states 
cpfcpflO), etc. 

Proposition 1 .  The operators 

acting on the Fock space F form a representation of the algebra ( 1 ) .  

With the help of equation (3)  it is easy to prove this proposition by direct calculation. 
Indeed, we can obtain in this way the following identity: 

[ J A ,  J B 1 = c p * G [ z A ,  z B l ~ O .  (5) 
Because the matrices ZA satisfy the relations ( l ) ,  from (5) we obtain that the 

In general, this representation is reducible. From the identity (5) we can see that 
operators JA satisfy them too. 

the operator 

C,  = cp*Gcp (6) 
commutes with all generators J A .  This is the first-order Casimir operator which has 
the meaning of particle number operator. Then we see that the Fock space F reduces 
to an infinite set of subspaces on every one of which an irreducible representation of 
our algebra acts. Every such subspace is characterised by a definite eigenvalue of the 
Casimir operator (6). In particular, the vacuum state realises the scalar representation 
of the algebra and the eigenvalue of the Casimir operator in this case is zero. The 
one-particle states realise another representation for which the eigenvalue of the Casimir 
operator is one. The same is valid for the two-particle states, three-particle states, etc. 

Because of this special structure of the representation in the Fock space F, they 
were named ladder representations. In our paper these will be called ladder representa- 
tions of the usual type. 

The ladder representations of the usual type have been considered in a large number 
of papers in connection with different physical applications. For the algebras of the 
groups SU(2,2)  and SU(6,6),  for example, one may see the papers of Stoyanov and 
Todorov (1967, 1968) and Todorov (1966). 

We may obtain a different form of the ladder representation if we assume that 
there is a connection between the operators cpI  and their conjugates c p ? ,  

cp: = c p K V K ,  ( 7 )  
where V is an invertible matrix. In this case we cannot consider cp, and cp? anymore 
as annihilation and creation operators. Moreover, the matrix V exists if and only if 
the matrix representation ZA is equivalent to a real representation. Indeed we may 
rewrite the relation (7 )  for the transformed operators cp: and cp?’: 
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Then from (7)-(9) we obtain 

VI; v-' = I', (10) 

v- '=  v (11) 

and 

where the superscript T stands for transposition and 
matrix. 

operator cp which can be obtained from (3) and (7): 

denotes the complex conjugate 

In this case we have new commutation relations between the components of the 

[cp,,cp,I=(G-'V,, =(G-'V-')zK. (12) 

The structure of these relations shows that the annihilation and creation operators 
appear now as different components of the same vector cp. One may construct the 
simplest example of such an operator cp by just joining together the sets of annihilation 
and creation operators. 

Then we can prove the following. 

Boposition 2. The operators: 

form a representation of the algebra (1). 

To verify this proposition we must also make some calculations which are more 
complicated in this case. Indeed with direct calculations we obtain for the right-hand 
side of the relations (1): 

(14) 

Then with the help of (2) and ( 10) the equality (14) can be written down in the 

[ L A ,  L R I  = kJVG[L, I B 1 c p  +i(IBcp),l VGZAcp), -a(cpVGIA),(cpVGIRG-' v-'),. 

following form: 

[LA, LB1 =hPVG[L, I B I P  

From the last identity the validity of the proposition (2)  becomes obvious. 
One of the main properties of this type of ladder representation is that the first-order 

Casimir operator 

C, = qVGq (15)  

has a fixed value. 

relation with the matrix VG and taking traces we obtain that 
From the commutation relations (12) we can find this value. Multiplying this 

C, = f T r  1 = f d  (16) 
where d is the dimension of the matrix representation, for example, the dimension of 
the space M. To find the result (16) we have taken into account that the matrix VG 
is antisymmetric because of (12). 

It seems to us that the ladder representations of this second type have been 
considered only rarely and have not been completely investigated. In Stoyanov and 
Todorov (1968), in particular, representations of this type have been applied for the 
Lie algebra of the group Sp(4, R ) .  
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Next we shall generalise the ladder representation method described above. With 
the help of this generalisation the ladder representations may be used not only for the 
construction of new representations of a given Lie algebra but also for the representa- 
tions of the corresponding Kac-Moody algebra. 

We begin from the same assumption as above about the matrix representation of 
the Lie algebra (1). But here we suppose that there are infinite number of modules 
M ,  of the same type of matrix representation, where the Greek letters may take every 
integer values (i.e. CY E h) .  The representation matrices 1, from different modules M ,  
coincide with each other. We suppose that M ,  is equivalent to the real module, but 
after conjugation its vectors can pass to another M p  with the help of a splitting matrix 
V,,k,, . Then the annihilation and creation operators are the operator-valued com- 
ponents of the infinite-dimensional vector from the direct sum of M .  Let us denote 
this vector by (P with components (P!,. Here a latin index i indicates the number of 
vector components in one module whose number is a. 

Remark. In all modules, M ,  bases of the same type have been chosen. This means 
that all matrices such as G in the different Ma also coincide with each other. 

Now we can define the commutation relation between arbitrary components of the 
infinite-dimensional vector operator (P: 

The Fock space may be constructed in the usual way by defining the vacuum state 
10) and extracting the pairs of creation and annihilation operators from the vector (P. 

If this is done we can define the normal product of the operators (P~,: 

: ( P l U ( P J p  : 

in which every annihilation operator stands to the right of every creation operator. 
Let us denote the difference between the usual and normal products as follows: 

(18) 

can be defined. In general it must satisfy 

(19) 

Each product of the operators (P,, can be brought into the normal form by using the 
Wick theorem. 

DtCr.Jp = ( P l m P J p  - : 'Pla(PJp:'  

In every concrete case the matrix D,, 
the following identity: 

D t , , ~ p  - D J ~ , J ~  = ( G-' v- ' )vkap.  

Theorem. Let us define the operators 

where ( V G ) ,  is the matrix, the inverse of which stands in the right-hand side of (17), 
IA is the representation matrix in each of the modules M,, and the matrices h i p  ( 6  
indicates the number of each matrix) are symmetric and satisfy the following relations: 
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Hereff;, are the same structure constants as in (1); QE,r)(IA, 1,) are c-number quantities 
representing the central charges and having the following form: 

Q & r ) ( l A i  [ E )  = f D ~ o . ~ G ( V G z A ) t ~ (  V G z B ) x f h Z @ h & D ~ f l  

+ ADtu , l e  ( V G L )  ,, ( VGIB )A $ h & D,p 

-aDK,,,,( VGIA),( V G ~ ~ ) , i h ~ p h L  DIF, ,~ 

- to If., ( V G L  ) ( V G I B )  A ‘up h & DKs ,,p (23) 

Let us make some comments on this theorem. First of all the commutation relations 
(22) in general d o  not coincide with the ones of the initial Lie algebra and they define 
a new infinite-dimensional algebra of the Kac-Moody type. Because the central charges 
QE,r ) (14 ,  I,) in the relation (22) are in a general form we can call the algebras of this 
type generalised Kac-Moody algebras. We shall see that most of the known algebras 
such as the usual Kac-Moody and Virasoro algebras may be obtained from equation 
(22). In this sense our theorem shows how to d o  what is called the affinisation of the 
given Lie algebra. It is important to note that the latter may be both finite and  infinite 
dimensional. 

From the relations (21) we can see that there are four possibilities for the values 
of the numbers 5 of the matrices h‘: 

5 = 0  5’0 5 < 0  5 E Z  

e.g. 5 takes all integer values. As we shall see later, the first case is suitable when the 
initial algebra is an infinite one. 

If we suppose that 

h ‘ = k  ‘U‘ (24) 

then we obtain from (21) for the matrices U‘ the following 

(25) 5+‘1 U .  

It is easy to solve these equations. Indeed the general solution has the form 

U5 = (g)E (26) 

where g is an  arbitrary matrix. 
The proof of our theorem may be obtained by direct calculations as above. Some 

complications arise in this case because of the normal product in the definition (20). 
But these calculations d o  not contain any unexpected difficulties and so we shall not 
perform them in this paper. 

The first-order Casimir operator here also has a fixed value. If we define this 
operator as 

c, = :cp,u(VG),k,;cp,p: (27) 

i.e. with the help of a normal product, then its value is zero, because of the antisymmetry 
of the matrix ( VG), ,k;A.  

Now we consider some examples. First, we shall consider any finite-dimensional 
Lie algebra. In our opinion the most simple but non-trivial case appears if we take 
the Lie algebra of the group SL(2, R ) .  Its generators have the form 

( L ) , k  =@A+,.*  (28) 
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where A = -1, 0, 1 and j ,  K = *;. They satisfy the following commutation relations: 

[ I L l ,  I01 = *I*l [ I I ,  I - J = + I 0 .  (29) 

The metric tensor has the form: 

The commutation relations (17) can be rewritten here in the following way: 

C P ] ~ ,  vKp1 = - J a l + r , ~ a o + ~ , ~  (31) 

where a, p take all integer values. These commutation relations show that we have 
chosen the following type of the matrices: 

k, = a a +p.o, 

Q:d = (33) 

Moreover, for the conjugate operators we have 

This relation shows how to define the pair of creation and annihilation operators. 
Without going in detail we write down only the matrix Dla,Kp in this case: 

D]a , K p  = -je( a ) ' , + K , o '  OI +p,o (34) 

where 
cU>O 

e ( a ) =  I (i E:: 
is the Heaviside function (with a defined value in a = O ) .  

For the matrices h5 we choose here the following particular solution of (21): 

h i p  = SS.a+P 

where 6 takes the same values as a and p. 

SL(2, R )  Lie algebra. They have the form 
Then we may write down the generators of the corresponding affinisation of the 

Of course, now we may verify that the operators (35) satisfy the commutation 
relations of the type (22), but this is not necessary. The only thing we must do is to 
calculate the central charge. In our case the matrices (VGIA),, have the following form: 

( VGIA),, = (36) 

We insert this and (34) into (23) to obtain: 
oc 

Q ~ , ? ( I A I  ( D i a ; K S D A - i , f - n ; B - ~ , r ) - 6  
a , ~  = -X i,r =+t 
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If we now take into account that D,,,,, is given by (34) then (37) can be rewritten 
as follows: 

Q ~ , , , ( I ~ ,  ] E ) = ; (  2 C ,  [ K ( A - K ) e ( a ) e ( t - a )  
3c 

8 2  ,5-3c * =  

- K ( A  - K e( a ) e( -8 - a 11) 6 6 ,  1,~6 A+ B,O 

(38) - - -ats.!+ q.06 A+B,O.  

One can see that after the affinisation we obtain the usual SL(2, R )  Kac-Moody 
algebra with the well known central term. 

The next example is connected with the infinite-dimensional Witt algebra. As is 
well known the generators of this algebra satisfy the following commutation relations: 

[ J A ,  J B ~ = ( A - B ) J A + B  (39) 

where A, B take all integer values. One can find very simple matrices which form a 
representation of this algebra. Here we have chosen the following ones: 

The indices K, j take all integer values except zero. To obtain the metric tensor 
one must first define the Hermitian conjugation of the matrix representation. As usual 
we suppose that 

leading to the following metric tensor 

whereas the matrix V must have the form 

v,, =s,+,,,. (43) 

Here we will not make any choice for the matrices hi, .  This allows us to obtain a 
more general type of the central term. For the operators cp,, we assume the following 
commutation relations: 

(44) 

Then let us write down the affine generators: 

[ C p r , ,  Cp,o,PI= ( G - l V - ' ) , b  = -i6,+,,0~r4/3. 

As one can see, k,, is chosen to be just 

To calculate the central term we must define the pair of creation and  annihilation 
operators or, which is the same, define the matrix D,,,,,. In our case the latter can 
be chosen as 

D,,,,, = -Wi)6t+,,080,0,P. (46) 

(47) 

This expression leads to a peculiar factorisation of the central term: 

Q , , , , ( ~ A ,  1,) = Q O O ( ~ A ,  1,) Tr he'" 
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Algebras of this type were obtained for the first time by Stoyanov (1985) where we 
investigated the infinite Lie algebras connected with the four-dimensional Laplace 
equation. From (53) we can see several properties of the algebra obtained. 

First, a particular case of equation (53) is the usual Virasoro algebra with an 
arbitrary value of the central charge. Indeed, if we had chosen the matrix g from (26) 
as a projection operator on any subspace of finite dimension d then we would have 

(54) he = ( g ) *  = g 

for every 5 and 

T r h * + " = T r g = d .  

In this case the generators 
If the matrices h i p  are infinite dimensional but with finite traces, then the central 

charge is a function of the sum 5-C 7. The exact form of this function depends on the 
choice of the matrix g. This case is very important because the construction of ladder 
representations of such algebras is the only thing we can do so far. Finally, let us note 
that such algebras must appear in the three-dimensional compactifications (maybe in 
any membrane theory) as the Virasoro algebra appears from the two-dimensional 
compactifications (e.g. in string theory). 

do not depend on 5 because of (54). 
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